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Turbomachinery design and tonal acoustics computations

Akil A. Rangwalla

R AL . DO
pprng IABSTRATIED
ObjectiVe

This report describes work performed under co-operative agreement NCC2-767 with
NASA Ames Research Center, during the period from June 1993 to January 1995. The
objective of this research was two-fold. The first objective was to complete the three-
dimensional unsteady calculations of the flow through a new transonic turbine and study
the effects of secondary flows due to the hub and casing, tip clearance vortices and the
inherent three-dimensional mixing of the flow. It should be noted that this turbine was
and is still in the design phase and the results of the calculations have formed an inte-
gral part of the design process. The second objective of this proposal was to evaluate the
capability of rotor-stator interaction codes to calculate tonal acoustics.

Motivation

The ultimate motivation behind this proposed research is to be able to simulate a com-
plete propulsion system. In order to do this, certain key CFD methodologies such as
turbomachinery flow solvers have to evolve to a level of maturity so as to be used with
confidence. An important criterion for a numerical code to be a design tool for turbo-
machinery applications, is its ability to predict accurately, the secondary flow features,
losses and other more sensitive flow quantities such as tonal acoustics.

Background

Computational luid dynamics (CFD) is playing an increasingly important role in the de-
sign of various propulsion components. Considerable progress has already been made in
using CFD in the design of turbopumps and impellers. Turbomachinery (rotor-stator)
fow solvers have been developed at NASA/ARC which incorporate some of the most
modern, high-order upwind-biased schemes for the solution of the thin-layer Navier-
Stokes equations (Ref. 1-2). The family of rotor-stator interaction codes (which includes
ROTOR-1, ROTOR-2-4 and STAGE-2 codes) are currently in use in several industrial
and government organizations. So far, the unsteady rotor codes have proven quite capa-
ble of predicting pressure variations on the surface of the airfoils. They have also demon-
strated their capability of predicting more “sensitive” flow variables such as the total
pressure losses in the flow field. In addition, two-dimensional versions have been used in
the actual design of turbomachinery (Ref. 3). However, the success of CFD in the de-
sign of turbomachinery has largely been in predicting the two-dimensional time-averaged
and unsteady pressure loads on airfoil surfaces. However, there are important three-
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dimensional effects in the flow associated with turbomachines such as secondary flows
due to the hub and casing, tip clearance vortices and the inherent three-dimensional
mixing of the flow which require additional detailed analysis. Additionally, the flow in
the tip clearance region is not well understood. There can be considerable flow turning
and temperature variation in this region that can affect the overall performance of the
turbomachine. An important aspect of the flow in a turbomachine is the impact on the
overall losses due to secondary flow features. Hence the timely completion of the three-
dimensional unsteady flow in a new transonic turbine in the design stage would make
rotor-stator interaction codes developed at NASA/ARC a viable tool for turbomachinery
design.

The second aspect of this proposal was the calculation of tonal acoustics in turboma-
chines. In Ref. 4-5, two-dimensional unsteady rotor-stator interaction calculations were
performed to study the plurality of spinning modes that are present in such an inter-
action. The propagation of these modes in the upstream and downstream regions was
analyzed and compared with numerical results. It was found that the numerically calcu-
lated tonal acoustics could be affected by the type of numerical boundary conditions em-
ployed at the inlet and exit of the computational boundaries and the grid spacing in the
upstream and downstream regions. Results in the form of surface pressure amplitudes
and the spectra of turbine tones and their far field behavior were presented. The “mode-
content” for different harmonics of blade-passage frequency was shown to conform with
that predicted by a kinematical analysis. It was however assessed that a similar three-
dimensional calculation would require a highly accurate algorithm since relying on very
fine grids would be impractical. Also, three-dimensional non-reflective boundary condi-
tions would have to be developed. It was with the above in mind, that the development
of a new high-order accurate multi-zone Navier-Stokes code was initiated. This code is
based largely on the ideas presented in Ref. 6. Figure 1 shows a comparision of the re-
sults obtained by the new code with that obtained from ROTOR-2. These preliminary
results look quite promising and have indicated a further study in the development of
the new method.

Achievements

Flow predictions in an advanced transonic turbine was completed in a timely fash-
ion. The task for the calculation was given at the same time as fabrication was initiated.
The numerical results were obtained well in advance of the first experimental runs and
have already played an itegral part in determining the placement of the probes and have
also facilitated in the understanding of the experimental results. This exercise has made
three-dimensional rotor-stator interaction codes a viable tool in the design process.

A detailed study of the capability of the two-dimensional rotor-stator codes in com-
puting tonal acoustics was completed. In anticipation of extending this capability for
three-dimensional predictions, development of a new high-order-accurate flow solver was
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initiated. Preliminary results appear to be promising.
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the lefear behavior of the flow in the far field. Two (5 pes of nonrellective bowwdary comditions are tested  The fiest is a dif-
ferential one-dimensional bonndary condition derived from the far fickl acoustic

al belavior of the flow and shmilar (o (hat
developed by Baylig

log A;nnxi Turkel ([9], [H)’ and |1 11} The second was an approximate two diunensional unsie
condition develaped in [12). “This second approach (using ditlerent nonreflective bound
“short-prid™ approach.
perforimed.

ady boundary
ary conditions) will be denoted the

For the purpose of compavison, short-grid cateulutions with reflective boundary conditions are also

This stwdy focusses an an exantnation of the modes present in a rotor-stator infer
using a Navier-Stokes solution procedure. Resalts in the form of turbine tone spectra
sotne modes are presented

action for a Jstator/dirotor case
and axial variation of amplitudes of

KINEMATICAL ANALYSIS OF INTERACTION TONE NOISF

Reflective houndary conditions, sucli as a fixed oxit static pressure condition
nonreflective boundary conditions with the use of appropriate grids in the far 6 in the
far-field region ate of the order of the wavelength of the wode (o be 4

rogion : r he wave attenuated, the energy associated with that mode de-
cays rapidly because of numerical dissipation. Hence, in order 1o attenuate reflections at the computational boundaries

when ieflective houndary conditions are nsed, an estimiate of the maxinnnn w
ll.n:rcforc a knl(‘l’l:l!ll":ll analysis of the Fourier medes was caeried anl. “This analysis, when coupled with a lincarized anal-
ysis of the flow gives important information ahout the relative magnitudes (of the different. Fourier modes) as a fnction of
disl.anre: The method was first used in |6} for the analysis of a single stage and can be generalized for multiple stages. The
assuinption made here is that the tone generating inechanisiis oceur at multiples of Dlade passing frequency. It should be

noted that contributions from wake shedding and other aciodynamic noise sources )

o reddi s are ignored. The computed results seem
to indicate that thesr secondary contribntions are small for the geowmetry and flow conditions chosen.

can he made to hehave essentially as
ol vegion. When the grid coll si

avelength in the pressure fiekd is required.

Fhie following analysis is limited to two-dimensional flow but can be exien

. olioy i ) pded Lo three dimensions in a steaightforward
fashion. Cunsider a single-stage turbine, where

: i i s the munber of stator airfoils and R {he ninnber of rotor airfoils. The
composite pitch is the transverse distance over which the low is periodic and is denoted by {

stator airloits is 1/5 and the distance between rotor nitfoils is I/R. The velocity of the.
sure at any axial plane in the flow fiekd. is assumed 1o be periodic in time w
for the rotor-stator geometry to repeat. ln the case of a single-st
the period in a stationary frame of reference is given by {f|Vp|lt.
sure variation in any particular axial plane is given by

The distance between the
rotor is denoted by Vi The pres.
ith period equal 10 the minimuns tinie required
age configuration with identical, equispaced rotor airloils,
This is also known as the blade passing time. The pros-

)

Pl t) = Z }: a,,,,,rns(-z%(my = nRVRIO) 4 $in) {1

where nis the hanmonic of blade passing frequency and i corresponds to the spatial hanmonic in y - Assuming that ev-

ery stator airfoil in the sl:\llor row is equally spaced, the pressure variation is assumed Lo satisly the shift condition, which
slatt:s that p(y, I.) =ply-5.0- ; i) which is valid only when frequencies that are non-commensurate with the blade
passing frequencies are absent. This then yields

m = nR{sgn(Va)) & kS (2)

where k= ..., ~1,0,1,... is the spatial harmonic of the disturbance produced by the stators.

Propagating Modes

Analytical solutions representing the unsteady flow in the far field can also be derived
that in the far upstream and downstream regions, the unsteady flow is a linear perturl,
underlying steady uniforin flow in the upstrean cegion is «ifferent from that in the
tion of the pressure fiekd indicates that a Fourier mode propagates, if

. as given in [8]. It is assumed
alion of a steady uniform flow. (The
downstreans region}. A linearized solu-

nR Mg

M
ot :
UV Ty B e v )

Y . .
whcr? Mpis Lfl, M,' is the axial Mach number of the underlying flow and A,
derlying flow. The axial wavelength of the propagating mode is denoted by A,

y is the transverse Mach number of the un-
and is given by
_ {1~ Af2)
=
M(nRME + Mym) £ sqn(Vi ) f(nRMg + M, m)2 — (1 — A Zyin? Q)

whcrf‘, m is given by Eq. (2). For very low values of axial and transverse Mach nambers, Af,
maxiinum wavelength A; can he approximated b
be seen that for the lower hanwonics,

al ay e, and M, respectively, the
y substituting 0 for M, and M,y in Eq. (1). For low values of Mp, it can

i
nftMp ®)
For a 3-stator/4-rotor case that is presented lere, [A fna, = (3RMp) siuce the

hot propagate wider the present assuniptions of M, My < 1 When a lon
in the far field region, the grid spacings near the exit aud inlet boundaries

Arfonar =

fundamental and the first harmonic do
& grid is used to dissipate the propagating modes
are chosen (o be about [Asomar 72 0 should be

noted that there is a possibility of large axial wave lengths when nRMp = \/(i'; Af Ty, but this would occur only for
higher harmonics under the present assumptions of Jow Mach numbers.

Decaying Modes
A fourier mode will decay with increasing axial distance fromn the rotor-stator pair il the inequality sign in By, (3) is
reversed. ‘Fhe amplitude of the mode would vary as

g 0 eEHmnT )

where P

- (2" ! )7{(1 - M2 — [nRM ot mat, ) : M

& Ti-?

mn
A decaying mode decays exponentially. It is understood that for z < 00 the positive sigw 1 Eq. (6) is used and for 2 > 0
the negative sign is used. The variation of the natural loganitht of the amplitude (log{dma)) is tincar with stope &d,,,.

GEOMETRY AND GRID SYSTEM

The airfoil geometry used is that given in [2). ‘The two-dimeusional computations of this study were performed using
the experimental airfoil cross-sections at midspan. These cross-sections, atong with a schematic of the cotnputational grid
are shown in Figure 1. A system of patched and overlaid grids is used to discretize the flow region of inlerest. The innet
grids are O-grids that were generated using an clliptic grid generator. The outer R-grids were generaled algebiraically. The
experiment consisted of 22 stator airfoils and 28 rotor aitfoils. To model the experimental setup the flow over “at least 25
airfolls {11 stator airfoils and 14 rotor airfoils) would have to be caleutated. This would require excessive computational
tesources. It was therefore decided 1o solve a smalles probleny by using rescaling strategios as shown in |13} in order to re-
duce the aitfoil count. The number of stator airfuils was changed from 22 to 21 and the size of each individual stator airfoil
was enlacged by a factor of 22/21. This rescaling allows a 3-statoe/ {-rotor computation wherein periodicity is imposed on
the flow over 3 stator airfoils and 4 rotor airfoils. Changing the airfoil count does change the nature of the tonal acousties
in the flow field because the mode content of the propagating modes depends upon the airfoil count as indicated by Eqs.
(2-7). However, since the objective of this prebminary investigation is to evaluate the capadility of rotor-stator iuterac:
tion codes n eateulating tonal acoustics, the resealed rotor-stalor geametey was wsed, [ shoudd be neutioned that Figure
1 shows only a schematic of the grid. “Fhe actual number of grid points is much larger and The spacing hetween the grid
points is much smaller. More details about the grid system can be found in [13].

NUMERICAL METHOD

Stokes equations are solved using an upwind-binsed finiteditlerence algorithin, The
enlealated using the

o At each time step,
Aquations are solved. Additional detmls

‘The unsteady, thin tayer, Navie
Kinematie viseosity was cadenlatod using Suthesband’s aw and the tarhntent ey visoosity
Baldwin Lomax model. “The nethod is third-orderacenrate in sp accurate it
jous ate performed, so thal the tully Simplicit fimte-diffecenc

cond o

¢ and

several Newtoon e
regarding the seheme e be fomnd an [13]

BOUNDARY CONDITIONS

The bowndary conditions regquired when usging tualtiple 7ones can be broadly dassified into two types, The fiest (ype
consists ol the zonal conditions which are implemented at the interfaces oF the computationat grids and the sceond type
consists of the natural boumdary couditions imposed on the surface atud the onter Loundacies of the computational grid.
The teeatment of the zonal boundaries can be found in [11). The nataral boundary conditions used in this study are dis-

cussed helow,

Aitfoil Surface Boundary

The bonndary eonditions en the i surfaers are the “neship”™ condition and adiabatic wall conditions, 1t should be
noted that in the case of the rotor airfoil, “no-slip” implics zero relitive vrlocil_\' at the surface of the airfoil. In addition to
the “no-slip™ condition, the derivative of pressure in the dircction normal’to the wall suiface is set 1o zevo.

Exit Boundary

One reflective and two radiative boundary conditions were studied. For the reflective boundary condition (see e.g.
[13]) the exit pressure was specified and three quantities are extrapotated from the interior. The thre: quantitics are the
Riemann variable Ry = u + 2¢/(y = 1), the entropy § = p/p? and v the transverse velocily. This type of boundary condi-
tion reflects the pressure waves that reach the boundary back inte the system. Two types of radiating boundary condlitions
were also implemented. The first was a one-dimensional boundary condition formulated by Baytiss and Tarkel ({11] and
also [15)). It is assumed that at the downstream boundary. the flow is linear. Two-ditensional boundary conditions as pre-
sented in [12] were also implemented. As in the previous boundary condition, the flow at the exit is assumed to have sl
perturbations and hence linearizable about an underlying mean flow. Implementation of this boundary condition requires
a know leddge of the underlying exit flow variables, pa., oo, teo, and pos. The first three quantitics are tite lagaed whereas
the exit pressure. peo, is kept constant.

tnlet Benudary

One reflective and Lo radiative boundary conditions were also studied foe the inlet. The first was the reflective
boundary condition procedare wherein three quantitics have to be specified. The three chosen are the Riemann invariant
Rp= w4 20/(7 = 1) = t(ooo) + 2¢(wce) /{7 = 1) the Luta.l PLESSUTE Procal = P~y (1 + (7~ 1/2)1\1"'_;‘:’)=ﬂ al!d the inlet
flow angle, which in this casc is equivalent Lo vingee = 0 The fourth quantity neelded to update the points on this houndary
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TURBOCHARGER NOISE, GENERATING MECHANISMS AND CONTRQL
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{s) Axial dislance upsiream of turbine {b) Axial distance downstream of turbirs ) Sunil H. Sahay Denis Thouvenin
Product Engineering Engineering Department
Garrett Automotive Group Garrett, S.A.

Pigure 5, Comparison between numerical and thraretical decay rates (a) niode (1,2) upsteeam and (b) mode (1,1} Torrance, California 90505 Thaon-les~-Vosges
downstream. U.S.A. France

ABSTRACT

Turbochargers, with maximum running speed in excess of 200,000 rpm,
are perhaps the fastest running turbomachinery in today’s Automotive
industry. Turbocharger noise problem came into prominence with tha

- application of turbochargers on passenger cars in early 1970. During
the early period of its application, a "pure tone" noise synchronous
with the turbocharger speed, was the dominant objectionable noise and it
was controlled by reducing the imbalance level. Since then, additional
types of turbocharger noise, excited by mechanical vibration and air
flow, have been encountered . The trend towards {ighter and more compact
vehicles with reduced engine space has increasced vehicle’s response to

' turbocharger generated vibration and pressure pulsations that result in
P vehicle noise. This presents an ecver-increasing challenge to the
turbocharger manufacturers for producing quiet turbochargers. This
paper presents a brief description of the different types of
turbocharger noise, their generating mechanisms and control. In most
cases, the noise reduction is achieved by design improvement and better
control of manufacturing process. This consists of changing the rotor-
bearing system design, improving the balance process to correct
extremely small amount of imbalance and tightening the casting and
machining tolerances for more symmetrical compressor and turbine wheels.

INTRODUCTION

Turbochargers are very high speed turbomachinery, used primarily on
automotive vehicles to increase the power output of a given size of
engine. Till the end of last decade, turbocharger noise was addres el
on a "fire fighting" basis. A prior assessment of potential noise
; problem was not done during the design and development phase which
: resulted in high cost for noise control . This has now started to change

and potential noise problems are being addressed from the start of
design. This paper will describe the various noise generating
mechanisms and the steps taken during the development of a new
turbocharger te control the noise generation. fThe development of this
turbocharger is nearing completion and the information presented is
! based on development testing. The next step in the cost effective noise
: control is for the turbocharger manufacturer to provide turbocharger
! related input to the vehicle manufacturer at the start of a new
engine/vehicle program and stay involved till the design is complete.
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In this study, the unsteady, thin-layer, Navier-Stokes equations are solved using a system
of patched grids for a rotor-stator configuration of an axial turbine. The study focuses on
the plurality of spinning modes that are present in such an interaction. The propagation of
these modes in the upstream and downstream regions is analysed and compared with
numerical results. It was found that the numerically calculated tonal acoustics could be
affected by the type of numerical boundary conditions employed at the inlet and exit of the
computational boundaries and the grid spacing in the upstream and downstream regions.
Results in the form of surface pressure amplitudes and the spectra of turbine tones and
their far field behavior are presented. Numerical results and experimental data are
compared wherever possible. The “mode—content” for different harmonics of blade-
passage frequency is shown to conform with that predicted by a kinematical analysis.

1. INTRODUCTION

THE FLUID FLOW WITHIN A TURBOMACHINE is inherently unsteady. There are several
mechanisms that cause the unsteadiness, and some of these are, (a) the relative motion
between the rotors and stators (which is also called the inviscid or potential effect),
(b) the interaction of the downstream airfoils with the wakes generated by the
upstream airfoils, and (c) the shedding of vortices at blunt trailing edges. In general, as
the axial gap between the stator and rotor airfoils decreases, the magnitude of the
unsteady interactions increases. These interactions can even become strongly coupled.
Hence, to study unsteady processes involved within a turbomachine, it may be essential
to treat the rotor and stator airfoils as a single system.

Pioneering work in predicting inviscid rotor-stator interaction was conducted by
Erdos et al. as far back as 1977. However, the subject has only very recently become
the focus of increasing attention due tO the considerable increase in computational
resources. Lewis et al. (1987) solved the quasi three-dimensional inviscid equations, and
Jorgenson & Chima (1988, 1989) used the explicit Runge-Kutta method to solve the
quasi—_three-dimensional Euler and thin-layer Navier-Stokes equations. Three-
dimensional periodic calculations have also been presented by Koya & Kotake (1985).
Gibeling er al. (1986) presents results for the flow in a compressor stage obtained using
a shearing grid technique. Here, a single grid is used to discretize the flow domain and
is allowed to shear in order to allow relative motion between the rotor and stator
airfoils. The data from the sheared grid are interpolated onto an undistorted initial grid
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at regular time intervals so as to limit the cumulative distortion due to grid shear

The development of general zonal techniques and robust, accurate algorithms for

numerical solution of Euler and Navier-Stokes equations has contributed further to

development of rotor-stator interaction codes. Giles (1988a) has calculated t
dimensional rotor-stator interactions using the Euler equations. In this work, a nc
concept of a “‘time-inclined” computational plane is used in order to surmo
difficulties encountered when the stator-rotor pitch ratios is not a ratio of two sn
integers. Rai (1987) presented a two-dimensional calculation of rotor-stator interact
for an axial turbine. The airfoil geometry and flow conditions were those given in Dr
et al. (1982). More recently, Rai (1989) and Madavan er al. (1989) computed the fi
three-dimensional flow fields for the same case. The hub, outer casing and the rotor

clearance were all included in the calculation. Rai (1987, 1989) and Madavan er

(1989) solved the thin-layer Navier-Stokes equations in a time-accurate manner us
an implicit, upwind-biased, third-order accurate method to compute the flow field. 1
ability of their codes to predict near field flow quantities, such as the time-averag
pressure distributions on airfoil surfaces and the pressure amplitudes and phase on 1
surface of the airfoils, was demonstrated. In addition, the two-dimensional codes we
used to predict accurately the total pressure defects in wakes. These compu
programs .have also been recently used in the design process of turbomachir
(Rangwalla er al. 1992). Rotor-stator interaction codes have also been used to calcul:
“sensitive’” flow quantities such as heat transfer (Rao er al 1992a,b; Griffin

McConnaughey 1989) and three-dimensional unsteady hot streak migration (Dorney
al. 1990). Recently, the codes have also been extended for multiple stage calculatio
by Gundy-Burlet er al. (1991). More recently, Dorney (1992) performed a rigoro
validation of a modified rotor-stator algorithm through comparisons with analytical a;
linearized unsteady aerodynamic solutions. The present work is focussed on investig:
ing the ability of rotor-stator codes to predict *“‘correctly” the tonal acoustics in t
flow field due to rotor-stator interactions.

An axial flow turbine (or compressor) produces rotating pressure patterns calle
spinning modes that may propagate in a spiral path. In two dimensions. these spinni
modes propagate at a non-zero angle to the axial direction. For any particul
harmonic of blade passing frequency, the interaction field can produce an infini
number of spinning modes. Each of these modes rotates at a different speed. Some !
these modes propagate, whereas others decay. The modes that are possible for som
multiple of blade passing frequency depends upon the number of stator and rot
airfoils. This study focusses on an examination of the modes present in a rotor-statc
interaction for both a single-stator/single-rotor and a 3-stator/4-rotor case using
Navier-Stokes solution procedure.

The numerical study of tonal acoustics involves the study of the flow field in th
upstream and downstream regions of the interacting rotor-stator airfoils. This raise
the issue of the numerical boundary conditions emploved at the computational inle
and exit boundaries and the grid spacing used in the upstream and downstream region:
Traditionally, the boundary conditions employed have been reflective. Reflectiv
boundary conditions have been used because they provide greater control on turbin
operating conditions, such as mass flow and pressure ratio. However, reflectiv
boundary conditions are generally inadequate for the study of tonal acoustics since the
reflect the propagating modes back into the flow field. Rai & Madavan (1990
performed a 1-stator/1-rotor calculation with non-reflective boundary conditions base:
on Riemann invariants. These non-reflective boundary conditions were the same a
those developed by Erdos er al. (1977). However it was found that the use of sucl
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boundary conditions resulted in a loss of control over the mass flow rate through the
turbine. To overcome this problem, two approaches were tried. The first approach was
to use reflective boundary conditions but with a sufficiently long computational domain
upstream and downstream of the rotor—stator airfoils. The estimated maximum of the
wavelengths of the propagating modes was then used to determine grid spacings at the
far upstream and downstream regions, so that the propagating modes are numerically
dissipated near the boundaries. An acoustic analysis based upon the methodology
developed by Tyler & Sofrin (1970), Goldstein (1974) and Verdon (1989) is applied to
determine the wavelengths of the propagating modes. This approach will be referred to
as the “long-grid” approach. The second approach was to use a short grid. but with
non-reflective boundary conditions, which provided some measure of control over the
turbine operating conditions. These boundary conditions are based on the linear
behavior of the flow in the far field. Two types of non-reflective boundary conditions
were tested. The first was a differential one-dimensional boundary condition derived
from the far field acoustical behavior of the flow and similar to that developed Bayliss
& Turkel (1980, 1982a, b). The second was an approximate two-dimensional unsteady
boundary condition developed by Giles (1988b). This second approach (using different
non-reflective boundary conditions) will be denoted the “short-grid” approach. For the
purpose of comparison, short-grid calculations with reflective boundary conditions were
also performed.

The computations that have been carried out so far, are for two different
configurations: a single-stator/single-rotor case and a three-stator/four-rotor case. Both
cases were computed using the long-grid approach as well as the short-grid approach
and the corresponding results are compared. Additionally, results in the form of
surface pressure amplitudes, the spectra of turbine tines and the axial variation of
amplitudes in the near and far field regions of the different modes are presented.

2. KINEMATICAL PREDICTION OF INTERACTION TONE NOISE

Reflective boundary conditions, such as a fixed exit static pressure condition, can be
made to behave essentially as a non-reflective boundary condition with the use of
appropriate grids in the far field region. When the grid cell sizes in the far-field region
are of the order of the wavelength of the mode to be attenuated, the energy associated
with that mode decays rapidly because of numerical dissipation. Hence, in order to
attenuate reflections at the computational boundaries when reflective boundary
conditions are used, an estimate of the maximum wavelength in the pressure field is
required. Therefore a kinematical analysis of the Fourier modes was carried out. This
analysis, when coupled with a linearized analysis of the flow gives important
information about the relative magnitudes (of the different Fourier modes) as a
function of distance. The method was first used by Tyler & Sofrin (1970) for the
analysis of a single stage and this study is generalized for multiple stages. The single
stage results are presented first followed by the results for multiple stages. The
assumption made here is that the tone generating mechanisms occur at multiples of
blade passing frequency. It should be noted that contributions from wake shedding and
other aerodynamic noise sources are ignored. The computed results seem to indicate
that these secondary contributions are small for the geometry and flow conditions
chosen.

The analysis that follows is limited to two-dimensional flow. However, extension
to three dimensions is straightforward. Consider a single-stage turbine as shown in
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Figure 1. (a) Rotor-stator geometry; (b) short grid; (c) long grid.

Figure 1(a). Let S be the number of sator airfoils and R the number of rotor airfoils
The composite pitch is the transverse distance over which the flow is periodic and i
denoted by /. Hence, the distance between the stator airfoils is L/S and the distance
between rotor airfoils is //R. The velocity of the rotor is denoted by V. The pressure
at any axial plane in the flow field, is assumed to be periodic in time, with period equa
to the minimum time required for the rotor-stator geometry to repeat. In the case of :
single-stage configuration with identical equispaced rotor airfoils, the period in :
stationary frame of reference is given by //|Vkz| R. This is also known as the blade
passing time. The pressure variation in the axial plane can be written as

Vel R
)

p(y, )= i pn(y) 608[27mt + an(y)], (v

n=0
where p,(v) is the amplitude of the nth Fourier component and &,(y) is the phase. It
should be noted that p,(y) and @,(y) are periodic functions in y with period equal to
the composite pitch . Using this periodicity in y and appropriate trigonometric
identities, ultimately results in

p(D=2 > P )

n=0m=-=



ROTOR-STATOR INTERACTION ACOUSTICS 615

where

2
DPon = Amin cos[—-l-]E (my —nR Vgl ) + ¢mni\) 3

where n is the harmonic of blade passing frequency and m corresponds to the spatial
harmonic in y. The next assumption that is made is crucial to the analysis. Considering
that all stator airfoil in the stator row are equally spaced, the pressure variation is
assumed to satisfy the shift condition, which states that

p(y, t)=p<y—é,t—75%>- 4

It should be noted that both equations (1) and (4) are valid only when frequencies that
are non-commensurate with the blade passing frequencies are absent. Substituting
equation (4) in equation (2) then yields

m = nR sgn(Vg) £ kS (5

where k=...,—1,0,1,... is the spatial harmonic of the disturbance produced by the
stators.

2.1 PROPAGATING MODE

Analytical solutions representing the unsteady flow in the far field can also be derived
(Verdon 1989). It is assumed that in the far upstream and downstream regions, the
unsteady flow is a linear perturbation of a steady uniform flow. (The underlying steady
uniform flow in the upstream region ‘is ‘different from that in the downstream region.)
A linearized solution of the pressure field (Verdon 1989) indicates that a Fourier mode
propagates, if

nR Mg + M,
mV1-M: Vi-M;

>1, - (6)

where My is [Vkl/c, M, is the axial Mach number of the underiying flow and M, is the
transverse Mach number of the underlying flow. The axial wave-number of the
propagating mode is

1 B B* '
kx = 1— Mi [Mx E * Sgn(VR) ‘C_Z - az]; (7)
where
2 2
=—ZE(nRIVR|+cMym), a=%n— V1 - M3

and ¢ is the sonic velocity in the underlying steady flow. The axial wavelength of the
propagating mode is denoted by A and is equal to 27/k,. Using equation (7) we get
- I(1—m3)

M, (nRMg + M,m) £ sgn(Vz)V(nRMg + M,my* — (1 - Mpm*’

Ax (8

where m is given by equation (5). For very low values of axial and transverse Mach
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numbers, M, and M,, respectively, the maximum wavelength, A, can be approximate
by substituting 0 for M, and M, in equation (8). For low values of Mg, it can be see
that for the lower harmonics, '

l

/\xmaxr‘__; ¢
[A:] R, (

In the case of a single-stator/single-rotor calculation, all harmonics would have spati:
modes that would propagate as indicated by equation (6) and hence the maximu
possible wavelength at the lower harmonics is

(10:

whereas, for a 3-stator/4-rotor case,

)

[/\x]max = 3RMR F (101:

since for this case the fundamental and the first harmonic do not propagate under th
present assumptions of M,, Mg <« 1. When a long grid is used to dissipate th
propagating modes in the far field region, the grid spacings near the exit and inle
boundaries are chosen to be about [A ]n.x/2. It should be noted that there is
possibility of large axial wavelengths when nRMg = V(1 — M2%)m, but this would occu
for higher harmonics under the present assumptions of low Mach numbers.

2.2. DECAYING MODE

A Fourier mode would decay with increasing axial distance from the rotor-stator pair -
the inequality sign in equation (6) is reversed. The amplitude of the mode would var
as

Ay  @E4meE (11

where

2 1 2
B = (T 7=37) (1= MDY~ (R + mbd . (12

A decaying mode decays exponentially. It is understood that for x <0 the positive sig
in equation (11) is used and for x >0 the negative sign is used. The variation of th
natural logarithm of the amplitude, log(a,.,), is linear with slope +d,,,,.

2.3. MULTIPLE STAGES

The analysis is similar in the case of multiple stages. Let the number of rotor rows be
and number of stator rows be s. Denote the number of airfoils in the rotor rows a
Ry, Ry, ..., R, and the number of stator airfoils in stator rows as §,,S,,..., S,. The
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composite pitch is again denoted by /, so that the distance between the airfoils in rotor
row i is [/R;, and the distance between the airfoils in the stator row i is //S;. Define

R = Highest common factor (Ry, Rz, ..., R,)
and
S = Highest common factors (S, $, ..., S;)-

The stator and rotor rows can be aligned arbitrarily; however, it is assumed that all the
rotors have the same velocity, Vi. It is also assumed that in each individual row, the
airfoils are identical and equispaced. The minimum time for the rotor-stator geometry
to tepeat is again equal to [/ |Vk| R. Thus, the pressure variation on any axial plane is
given by equation (1), and the shift condition is given by equation (4). R and S can now
be considered to be the number of rotor and stator airfoils on an ‘“equivalent”
single-stage configuration. The rest of the analysis is similar.

3. GEOMETRY AND GRID SYSTEM

The airfoil geometry used is that given by Dring er al. (1982). The two-dimensional
computations of this study were performed using the experimental airfoil cross-sections
at midspan. These cross-sections are shown in Figure 1(a). A system of patched and
overlaid grids is used to discretize the flow region of interest. Figure 1(b) shows a
typical system of grids used in this study. The inner grids are O-grids and were
generated using an elliptic grid generator. The outer H-grids were generated
algebraically. The experiment consisted of 22 stator airfoils and 28 rotor airfoils. To
model the experimental set-up the flow over at least 25 airfoils (11 stator airfoils and 14
rotor airfoils) would have to be calculated. This would require excessive computational
resources. It was therefore decided to solve a smaller problem by using rescaling
strategies adopted by Rai (1987) and Rai & Madavan (1990) in order to reduce the
airfoil count.

The tonal acoustics for two different rescalings were computed. In the first case, the
number of rotor airfoils was changed from 28 to 22. The size of each individual rotor
airfoil was enlarged by a factor of 28/22 such that the pitch-to-chord ratio of the rotor
was unchanged. This rescaling results in a turbine which has equal number of stator
and rotor airfoils, thus allowing a single-stator/single-rotor calculation. (Flow periodi-
city is imposed over one stator airfoil and one rotor airfoil.) In the second case, the
number of stator airfoils was changed from 22 to 21. The size of each individual stator
airfoil was enlarged by a factor 22/21. This rescaling allows a 3-stator/4-rotor
computation wherin periodicity is imposed on the flow over three stator airfoils and
four rotor airfoils. Changing the airfoil count does change the nature of the tonal
acoustics in the flow field because the mode content of the propagating modes depends
upon the airfoil count as indicated by equations (5-12). However, the objective of this
preliminary investigation is to evaluate the capability of rotor-stator interaction codes
to calculate tonal acoustics. Hence a numerical solution of a rescaled rotor-stator
geometry can be used to establish numerical boundary condition and grid require-
ments. Figure 1(b) shows a typical grid for the single-rotor/single-stator calculation.
However, if the grid spacing at the upstream and downstream boundaries is chosen to
attenuate reflections as described in the previous section, the grid would have to be
lengthened as shown in Figure 1(c). It should be noted that both the long and the short
grids are identical in the near field region.
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3.1. Grip DEnsITY

It should be mentioned that Figure 1 only shows a schematic of the grid. The actual
number of grid points is much larger and the spacing between the grid points is much
smaller. In all the calculations, each inner O-grid had 151 points along the airfoil
surfaces and 41 points in the wall normal direction for a total number of 6,191 grid
points in each O-grid. Each H-grid had 71 grid points in the y-direction and 90 to 141
grid points in the x-direction (90 points for the short grid case and 141 points for the
long grid case). This results in each short H-grid having 6,390 grid points and each long
H-grid having 10,011 grid points. The total number of grid points used for the
3-stator/4-rotor short grid computation was 7 X (6,191 + 6,390) = 83,067 whereas for
the long grid computation, the total number of grid points was 7 (6,191 +10,011) =
133,414. Rai and Madavan (1990) give more details about the grid system.

4. NUMERICAL METHOD

The unsteady, thin-layer, Navier-Stokes equations are solved using an upwind-biased
finite-difference algorithm. The method is third-order-accurate in space and second-
order-accurate in time. At each time step, several Newton iterations are performed, so
that the fully implicit finite-difference equations are solved. Additional details
regarding the scheme can be found in Rai (1987).

5. BOUNDARY CONDITIONS

The boundary conditions required when using multiple zones can be broadly classified
into two types. The first type consists of the zonal conditions which are implemented at
the interfaces of the computational meshes and the second type consists of the natural
boundary conditions imposed on the surface and the outer boundaries of the
computational mesh. The treatment of the zonal boundaries can be found in Rai
(1986). The natural boundary conditions used in this study are discussed below. In
particular radiating boundary conditions for the inlet and exit boundaries are
presented.

5.1. AIRFOIL SURFACE BOUNDARY

The boundary conditions on the airfoil surfaces are the “no-slip” condition and
adiabatic wall conditions. It should be noted that in the case of the rotor airfoil,
“no-slip” does not imply zero absolute velocity at the surface of the airfoil, but rather,
zero relative velocity. In addition to the “no-slip” condition, the derivative of pressure
in the direction normal to the wall surface is set to zero.

5.2. ExiT BOUNDARY

Two types of boundary conditions were used at this boundary. The first was a reflective
boundary condition where the exit pressure was specified and three quantities are
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extrapolated from the interior. The boundary conditions are

Dstatic = constant, (13a)
R 35
—1=0, —=0 (13b, c)
ox ox
and
ov
— =0, (13d)
0x

where R, = u +2¢/(y — 1) is the Riemann variable, S = p/p” is the entropy and v is the
transverse velocity. This type of boundary condition reflects the pressure waves that
reach the boundary back into the system. Two types of radiating boundary conditions
were also implemented. The first was a one-dimensional boundary condition and its
formulation (Bayliss & Turkel 1982) is shown below. It is assumed that, at the
down-stream boundéry, the flow is linear, that is, the unsteadiness can be considered a
linear perturbation to a steady flow. This steady flow need not be axial. However, we
can always rotate the coordinate system such that the x-axis is aligned with the
underlying steady flow. In the rest of the analysis, it is assumed that the coordinates are
so aligned. The linearized Euler equations far downstream are given by

(o) Tu. o 0 0] (o) o0 o 0] (o)
1

3 u’ 0 u 0 — ] u’ 00 0 O 5 u’
a)l |, pel 2] Ly 23 l=0 e
ot ax 119y

v’ 0 0 u O v’ 00 0 — v’

Pe
p) [0 et 0 wf (2] |00 pet Of |
" J L. A . J . . " J

where u,, p, and c, are the underlying steady state velocity, density and speed of sound
at the exit, whereas, p’, p’, u’ and v’ are the perturbations in the pressure. the density,
the velocity in the direction of the mean flow, and the velocity normal to the mean
flow, respectively. Using the linearized x-momentum, y-momentum and energy
equations, we can obtain

pl,r - 2uep.:'r - (Cze - uz)P.ix - Cgp;y =0. (15)

Introducing the change in variables

x
f—\/—lT——‘—Mze, n=y
r=ce\/1_——j\—/l—f + M.,E,

and

equation (15) is transformed to

Pe—Pég~Pan =0 (16)
Equation (16) admits solutions of the form
p'=f(t— &cos B +msin @), (17)

where 6 is the angle between the underlying mean flow and the axial direction
(6 = tan™'(v/u=); u, = Vuz + vz). These solutions are planar waves propagating in the
axial direction. Since in the present calculation the airfoils extend from 7 = —® to + =
waves of this form are expected to exist. It should be noted that a boundary condition
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based on equation (17) will be non-reflective for one-dimensional cases. Equation (1
suggests a differential operator of the form £ =(3/37)+ cos 6(3/3¢) —sin 8(d/3m
which annihilates the functional form in equation (17). Hence the radiating bounda:
condition used is £p = 0. which when transformed into the actual physical non-rotate
coordinates give, for M, «< 1,

pi=puca(l + Me)(u] + unitl). (1¢

Implementation of equation (18) is done by first setting u; equal to zero. This
consistent with the zeroth order extrapolation of the velocities at the boundary. Th
velocities # and v and the entropy p/p” are extrapolated from the interior. Th
pressure is updated on the exit boundary by using equation (18). In this equation, th
terms p.., 4. and v, are obtained by circumferentially averaging p, # and v at the ex:
at the previous time step. The exit sonic speed, c., is evaluated by using c.. = Vyp../p-
where the value of p. is fixed and is equal to the exit pressure value used in th
reflective boundary condition procedure.

The boundary condition described above is essentially a one-dimensional boundar
condition. Two-dimensional boundary conditions as developed by Giles (1988b) wer
also implemented. As in the previous boundary condition, the flow at the exit -
assumed to have small perturbations and hence be linearizable about an underlyin
mean flow. The exit boundary conditions in terms of one-dimensional characteristi
variables are

g
ac. 3 2
——C-3+{O U 0 v}— € =0, (192
at ay | ¢
Cq
. .
3
-1 C2 =O, (19b
ax
C3

where the transformation between the characteristic variables and the perturbatio
variables is given by

o —cZ 0 0 17(p
el _{ O 0 p=Cx 0 |ju’ (20a
C3 0 P=Cx 0 1 1{v
Cy 0 —pec. 0 1 ’
and
(Y [ 1 0 1 17 ()
P cZ 2c3 2c3 “
1
u' 0 0 - c,
{ r= 205Cu 2pxCx J 3 (20b
1
v’ 0 0 C3
paccx
L P ) L 0 0 2 ;o )
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Implementation of this boundary condition requires a knowledge of the underlying exit
flow variables, p, U, U=, and p.. The first three quantities are time lagged whereas
the exit pressure, p=., is kept constant.

5.3. INLET BOUNDARY

Here again two types of boundary conditions were used. The first was the reflective
boundary condition procedure wherein three quantities have to be specified. The three
chosen are the Riemann invariant

20
Rimu+ =y +22 (21a)
Y- y-1
the total pressure
-1 viy—1
Protat =p—x<1 + 2—2'_ lwz—z> , (21b)
and the inlet flow angle, which in this case is equivalent to
Vinlet = 0. (21C)

The fourth quantity needed to update the points on this boundary is also a Riemann
invariant but is extrapolated from the interior and is given by

dR,
—=0, 21d
ox (21d)
where
2
RZ =u - ¢ .
y—1

In the above equations the quantities u and v are the velocities in the x and y
directions, p is the pressure and c¢ is the local speed of sound. Specifying the total
pressure at the inlet results in the boundary condition being reflective.

A non-reflective or radiative one-dimensional boundary condition (Bayliss & Turkel
1982) was also implemented. As in the case of the exit boundary, it is assumed that at
the upstream boundary the flow is linear, that is, the unsteadiness can be considered a
linear perturbation to a steady flow. Using an analysis that is very similar to that used
in developing the radiating boundary condition for the exit boundary we obtain the
following condition at the inlet:

P = poselllon = Co)f + U_xli). (22)

At the upstream boundary, the Riemann invariant, R,, and the flow angle, viye, = 0, are
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still used. However, p,.. is replaced by the condition that at the inlet, the flow is
isentropic, which gives

plp? =constant=p_./p7., (23)

and equation (21d) is replaced by equation (22).

The radiating boundary condition described above is basically one-dimensional in
nature. Two-dimensional inlet boundary conditions (Giles 1988b) were also imple-
mented. The inlet boundary conditions in terms of the one-dimensional characteristic
variables are

5 ¢ v 0 0 0 ¢y
5; Cy + 0 v %(C + u) %(C - U) _a_ C2 — O, (243.)
s 0 i(c—u) v 0 ay | ¢3
- .
% _4. | (24b)
ox

The transformation between the one-dimensional characteristic variables and the
perturbation flow quantities are given by equation (20), with the quantities ( ).
replaced by the quantities ( )_..

5.4. UprER AND LOWER BOUNDARIES

The computations reported in this study assume that the flow is spatially periodic in the
y-direction. The spatial interval of periodicity depends upon the airfoil count. (For
example, in the 3-stator/4-rotor case, periodicity is imposed after every three stator
airfoils and four rotor airfoils.) Further details regarding this boundary condition can
be found in Rai (1987).

6. RESULTS

In this section, results obtained for the single-rotor/single-stator and four-rotor/three-
stator configurations are presented. In particular, a comparison between the long-grid
and short-grid computation with reflective boundary conditions and non-reflective
boundary conditions will be made. In addition, the spectrum of the turbine tones and
the variation of the amplitudes of the different modes in the far field will be presented
for different cases.

The dependent variables are non-dimensionalized with respect to the far upstream
pressure (p_..) and density (p_.). The free-stream velocities are

U_x = M-x\/;, Vo = 0)

where M_.=0-07 is the inlet Mach number. The pressure ratio across the turbine
(Pstaticond Protal,) 18 0-963. The rotor velocity was obtained so as to match the
experimental flow coefficient (ratio of average inlet velocity to rotor speed) of 0-78 as
given in Dring er al. (1982). The Reynolds number is 100,000/in. The kinematic
viscosity was calculated using Sutherland’s law and the turbulent eddy viscosity was
calculated using the Baldwin-Lomax model. The calculations were performed at a
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constant time-step value of about 0-16 (this translates into 500 time steps for the rotor
to move through a distance equal to the distance between two successive blades).

6.1. AIRFOIL SURFACE PRESSURE AMPLITUDES

The first comparison is made between the long and the short grid computations for the
single-rotor/single-stator case. Reflective boundary conditions are used in both
computations. Figure 2 shows the pressure amplitudes on the stator for the two cases.
The symbols in this figure are the experimental data of Dring et al (1982). The
pressure amplitude (C,) is defined as

= Pmax ~ Pmin
Cp="71 3
2Piniet®

where w is the rotor velocity and pr.x and pg;, are the maximum and minimum
pressures that occur over a cycle. A cycle corresponds to the rotor moving by a
distance equal to the distance between adjacent rotor or stator airfoils. The pressure
amplitudes obtained in the short-grid computation show most of the qualitative
features that are found in the experimental results. However, the numerical data show
a wider large-amplitude region than that found experimentally. In addition, the
predicted peak is to the left of the experimental peak, and the pressure amplitude
minimum on the suction side seen in the experimental results (x = —2-4) is absent in
the computed results. The long grid computation yields an amplitude distribution closer
to the experimental data. The position of the peak and the extent of the large
amplitude region agree well with the data.

The improvement obtained using the long grid is due to the large grid spacing in the
far field region of the outer grid, which attenuates propagating modes. However, one
penalty incurred in using this approach is the excessive computer time needed to obtain
a periodic state. A typical short grid computation for a 3-stator/4-rotor case to
converge to a time periodic state (including convergence in the tonal acoustics) is about
20cpu hours on a single processor of a CRAY YMP supercomputer. For a
corresponding long grid computation, approximately five times as much computing
time is required. Additionally, the time for convergence varies linearly with the number
of airfoils, provided the extent of the upstream and downstream regions of the grid is
the same. It should be mentioned that the time for convergence for flow quantities such

2:5

(a) (b)

Axial distance along stator surface

Figure 2. Pressure amplitude on stator surface for (a) short grid, (b) long grid for a 1-stator/1-rotor case:
O, suction surface; ¥, pressure surface.
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Figure 3. Pressure amplitude on stator surface for a 1-stator/1-rotor case (using nonreflective boundar
conditions): O, suction surface; #, pressure surface.

as pressure amplitudes on the airfoil surfaces and near field acoustics was considerabl’
less.

Figure 3 shows the computed surface pressure amplitude distribution obtained usin,
the short grid in conjunction with the one-dimensional non-reflective inlet and exi
boundary conditions [see equations (18,22)]. The agreement with the experimenta
data is slightly better than that obtained on the long grid with reflective boundar:
conditions. It was found that the level of repeatability (solution periodicity in time
with these boundary conditions was much better and the solution converged to a time
periodic state faster. In addition, turbine operating conditions were maintained unlike
in Rai (1990), where the use of non-reflective boundary conditions required an iterative
process in which the Riemann invariant, R,, (specified at the exit) had to be variec
until the proper average exit pressure was obtained. The flow coefficient and the
turbine pressure ratio differed from that obtained using the reflective boundars
condition by less than 1%. (This will be shown later in Table 3.) Figure 4 shows the

30

(b)

25

2.0

©
J

-10 -5 0 25 10 -10 ~3 0 25 10
Axial distance along rotor surface

Figure 4. Pressure amplitude on rotor surface with a (a) reflective boundary conditions and (b)
non-refiective boundary conditions for a 1-stator/1-rotor case: O, suction surface; #, pressure surface.
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Figure 5. Pressure amplitude on stator surface for 3-stator/4-rotor case with (a) a short grid and (b) a long
grid: O, suction surface; #, pressure surface.

pressure amplitudes on the rotor for a short grid with and without reflective boundary
conditions. It is seen that the amplitudes obtained using the non-reflective boundary
conditions are generally lower,

In contrast to the single-stator/single-rotor case, the pressure amplitudes for the
3-stator/4-rotor case did not differ much for the long or short grid or for the reflective
or non-reflective boundary conditions. For the single-stator/single-rotor case, an
acoustic analysis (Tyler & Sofrin 1970) shows that every harmonic could have
propagating modes whereas the 3-stator/4-rotor case does not have any propagating
modes for the first two blade passing harmonics. The first two harmonics do have
decaying modes. In the original experimental configuration, there are 22 stator airfoils
and 28 rotor airfoils. For this case€ also, the acoustic analysis does not predict any
propagating modes for the first two blade passing harmonics. Since the higher
harmonics are usually much smaller in magnitude, the unsteady pressures that reach
the computational boundaries in the 3-stator/4-rotor case are much smaller than that
for the single-stator/single-rotor case. Hence, it is expected that the reflective
properties of the boundary conditions would play a smaller role in determining the
unsteady pressures on the airfoils for the 3-stator/4-rotor case. Figure 5 shows the
pressure amplitudes on the stator surface for the short and long grids with reflective
boundary conditions. Figure 6 shows the pressure amplitude for the short grid with

[

[
-7-5 -2:3 2-5 7-5
Axial distance along stator surface

Figure 6. Pressure amplitude on stator surface for 3-stator/4-rotor case (using non-reflective boundary
conditions): O, suction surface; ®, pressure surface.
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non-reflective boundary conditions. Clearly there is an improvement over the resul
depicted in Figure 2(a) and a slight improvement over that depicted in Figures 2(b) ar
3. The extent of the large amplitude region and the location of the pressure pe:
matches the experimental data. The slight improvement is due to a closer similarity
the geometry with that of the experimental geometry. However, it should not t
concluded that reflective properties of the computational boundaries are unimporta
for the 3-stator/4-rotor case; they can still significantly alter the tonal acoustics in t}
linear region of the flow. The pressure amplitudes on the rotor surface for tf
3-stator/4-rotor case also did not depend on the type of grid or the bounda
conditions. The amplitudes on the rotor surface were very similar to that reporte
previously by Rai & Madavan (1990).

Besides the pressure amplitudes, phase information can also be obtained. The phas
of the low pressure peak on the stator suction surface [see Rai and Madavan (1990) f
details] for the 3-stator/4-rotor case did not depend on the type of grid or the bounda:
conditions. The numerical results compared well with experimental data of Dringer ¢
(1982) and were similar to that reported by Rai & Madavan (1990).

6.2. FArR FiELD LINEAR BEHAVIOR

The spectrum of turbine tones obtained from the computations is presented in th
section. Recall that the Fourier modes predicted by the kinematical analysis a
denoted by p,., [equation (3)], where m and n are related as given by equation (5). Tt
values of a,,, can be obtained by performing a Fourier decomposition of the pressu
variation upstream and downstream of the turbine. The upstream results we)
calculated at two chord-lengths upstream of the leading edge of the stator airfoils ar
the downstream results were calculated at two chord-lengths downstream of the trailir
edge of the rotor airfoils. Figure 7(a, b) shows the contribution of the axially aligne
planar waves (m = 0) for the single-stator/single-rotor case. The x-axis corresponds !

x10— . x10—
6 12
(a) (b)
Sk 10
4= 3+
: 3f 6
2k 4
1+ 7 -
A * A A | ‘\ W T U WU V|

0 4 8 12 0 4 8 12

Blade passing harmonic

Figure 7. Spectrum of the m =0 mode (a) upstream of the stator and (b) downstream of the rot
(1-stator/1-rotor).
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Figure 8. Spectrum of the (a) m =1 and (b) m = —1 modes downstream of the rotor (1-stator/1-rotor).

harmonics of blade passing frequency and the y-axis corresponds to the computed
coefficients, a,,,. It is seen that, in general, the amplitudes of the higher harmonics are
smaller than the amplitudes of the lower harmonics. Equation (6) predicts that all these
harmonics propagate without decay. The numerical results conform with this prediction
[see Rangwalla & Rai (1990)]. Note that the contribution due to the subharmonics of
blade passing frequency is very small (by two orders of magnitude) compared to the
harmonics of that frequency, thus leading to the conclusion that, for this mode, the
kinematical interactions dominate. It ‘was also found that the contribution of the
non-planar modes (m #0) upstream of the stator was less by at least an order of
magnitude when compared to the planar modes. Figure 8 shows the m =1 and m = ~1
modes downstream of the rotor. These modes are about an order of magnitude smaller
than the pianar mode. The subharmonic content is very small as in the m =0 case.

The situation in the 3-stator/4-rotor case is different. For the planar case (m =0),
equation (5) predicts the existence of only the n=3,6,9,... harmonics of blade
passing frequency. Figure 9(a) shows the contribution of these planar waves upstream
of the stator. Although the subharmonic content is more than in the single-stator/
single-rotor case, most of the energy is seen to lie in the n =3 and n =6 harmonics.
Figure 9(b) shows the contribution of the planar waves downstream of the rotor. It
should be noted that the pressure variations downstream of the rotor are measured in
the rotor frame of reference. Hence for the m =0 modes, the kinematical analysis
predicts the existence of only the n =4, 8, 12, . .. harmonics of blade passing frequency.
Once again, we notice a low level of subharmonic noise, thus leading to the conclusion
that for this case the kinematical interactions dominate. It should be noted that, for the
m =0 modes, the subharmonic noise of the single-stator/single-rotor case is of the
same order of magnitude as the 3-stator/4-rotor case than that in the single-
stator/single-rotor case.

The m =1 and m = —1 modes upstream of the stator are shown in Figure 10(a, b).
Substituting R =4 and § =3 in equation (5), the positive integer values that are
possible for n when m = ~1 are n=1,4,7,... and when m =1, the positive integer
values that n can take are n=2,5,8,... We observe that the dominant frequencies
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Figure 9. Spectrum of the (a) m =0 mode upstream of the stator and (b) the m =0 mode downstream o
the rotor for the 3-stator/4-rotor case.

conform with the kinematical analysis. The same is true downstream of the rotor. Since
the pressure variations downstream of the rotor are measured in the rotor frame o
reference, R and S in equation (5) should be interchanged. Hence, for the m = 1 mode
downstream of the rotor-stator pair, equation (5) predicts the existence o

=3,7,11,... blade passing harmonics. Similarly, for the m = ~1 mode. equation (5
predicts that the blade passing , harmonics that can be present are given by
n=1,59,.... The m=1 and m ="—1 modes downstream of the rotor are shown ir

Figure 10(c, d). Once again we observe that the dominant frequencies conform with the
kinematical analysis.

The computations can also be used to study the propagation or decay of the various
modes. To do this, either a long grid has to be used and the amplitudes of each mode
calculated in the region of the grid where the solution has not suffered from numerica
dissipation (due to grid coarseness) or a short grid with non-reflective boundarsy
conditions should be used. A study of the numerical propagation or decay of the
different modes has the advantage of determining the grid spacing required in the fa
field to maintain a propagating mode or to capture accurately the decay rate of ¢
decaying mode. Additionally, the effect of boundary conditions on the different modes
can be assessed.

Figure 11(a,b) shows the effect of grid coarsening on propagating waves for the
3-stator/4-rotor case. Figure 11(a) shows the amplitudes of three propagating modes
{@03, a0s and ape as given by equation (8)] upstream of the rotor-stator pair. As
propagating modes, these amplitudes should remain constant. However. the amplitudes
do decay as the grid spacing in the axial direction increases; (the symbols indicate the
axial location of the grid points). As expected, the higher harmonics decay faster
because they have smaller wavelengths. In the present case, the wavelength of the
(0, 3) mode is approximately 21-11 in. (536-2 mm), the wavelength of the (0, 6) mode is
approximately 10-55in. and the wavelength of the (0,9) mode is about 7-04 in. From
Figure 11(a) we see that numerical dissipation sets in when there are five or fewer mesk
points within a wavelength. Figure 11(b) shows the amplitudes of the propagating
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Figure 10. Spectrum of the (a) m =1 and (b) m = —1 modes upstream of the stator and of the (c) m =1

and (d) m = —1 modes downstream of the rotor (3-stator/4-rotor).

modes (a4 and aqg) downstream of the rotor—stator pair. Unlike the upstream results,
these amplitudes exhibit rapid variations near the rotor—stator pair. These oscillations
eventually subside and the amplitudes remain constant till they monotonically decay
because of grid coarsening. The rapid axial variation of the amplitudes immediately
downstream of the rotor—stator pair is due to the nonuniformity of the mean flow. This
nonuniformity is largely due to the velocity defects in the wakes of the rotor airfoils.
The axial range over which the effect of this nonuniformity is feit depends upon the
mode. It will be seen later that the rate of decay of the decaying modes and the axial
wavelength of propagating modes can be significantly affected by the nonuniformity of
the underlying mean flow. The effect of numerical dissipation due to grid coarseness
downstream of the rotor—stator pair is similar to that observed in the upstream region.
In the present case, the wavelengths of the (0,4) and (0, 8) modes are approximately
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Figure 11. Axial variation of the amplitudes of some propagating modes (a) upstream of the stator and (b)
downstream of the rotor (3-stator/4-rotor); @®. axial location of grid points.

20-96 and 10-48 in., respectively. In Figure 11(b) it is seen that numerical dissipation
affects the propagating modes when the number of mesh points within a wavelength
are five or less.

Figure 12(a, b) shows the instantaneous variation in the axial direction of the (0, 3)
and (0, 4) modes. In the figure, the effect of grid coarsening on the waveform can be
seen. Grid coarsening can affect the amplitude as well as the wavelength of the mode.
The present numerical results seem to indicate that the wavelength variation due to
grid coarseness is slight, as long as there are more than five grid points per wavelength.
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Figure 12. Instantaneous axial variation of the (a) (0, 3) mode upstream of the stator and (b) (0, 4) mode
downstream of the rotor (3-stator/4-rotor); @, axial location of grid points.



ROTOR-STATOR INTERACTION ACOUSTICS 631

TaBLE 1

Axial wavelengths of some propagating modes (upstream); 3-stator/4-rotor case.
(Theory in parentheses)

-2 -1 0 1 2
n=1 decaying decaying
n=2 decaying decaying
n=3 20-54(21-11)
n=4 20-81(21-63) decaying
n=35 decaying 14-96(15-09)
n=6 10-49(10-55)
n=7 9-46(9-81) 14-15(14-48)
n=38 10-57(10-82) 8-11(8-41)
n=9 7-03(7-04)
n=10 6-35(6-58) 7-16(7-55)

However the amplitude can be significantly affected by grid coarseness and decays to
about half its value when there are six grid points per wavelength.

Comparisons between the theoretical axial wavelengths and that obtained numeri-
cally are shown in the Tables 1 and 2 for the 3-stator/4-rotor case.

Table 1 shows comparisons upstream of the rotor-stator pair. In general, the results
are good. The differences are less than the maximum grid spacing in the region where
the wavelengths were measured. Table 2 shows a similar comparison downstream of
the rotor—stator pair. The numerical results are generally in fair agreement with the
theoretical predictions for all (m, n) modes where m =0. The differences are of the
same order as the maximum grid spacing in the region where the wavelengths were
measured. However, the calculated wavelengths of the (m, n) modes where m >0 do
not agree well with theoretical predictions. It should be recalled that the theoretical
prediction of axial wavelengths [equation (8)] was obtained under the assumption of a
uniform mean flow. However, downstream of the rotor—stator pair, the underlying
mean flow is not uniform due to the wakes of the airfoils. It is believed that this
nonuniformity in the mean flow is the main reason for the discrepancy between the
numerical results and theoretical predictions.

One objective of the present study is to see if non-reflective boundary conditions can
be used along with a short grid to predict the tonal acoustics present in rotor-stator

TaBLE 2.

Axial wavelengths of some propagating modes (downstream); 3-stator/4-rotor case.
(Theory in parentheses)

-2 -1 0 1 2
n=1 decaying
n=2 decaying decaying
n=3 decaying
n=4 23-51(20-96)
n=5 23-78(26-91)
n=6 decaying decaying
n=7 18-38(13:39)
n=8 11-65(10-48)
n=9 10-81(10-47)
n=10¢ 11-89(13-46) 20-81(11-12)
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Figure 13. Comparison between a long grid soiution and a short grid solution with reflective boundar
conditions for (a) the (0, 3) mode upstream and (0, 4) mode downstream of the rotor-stator pair, and (b) th
(1,2) mode upstream and (1,3) mode downstream of the rotor-stator pair. —, - - —. Long grid; - - - -

— - —, short grid.

interactions. Three different boundary conditions were compared. The first boundar
condition was a reflective boundary condition as given in Rai & Madavan (1990). Thes
boundary conditions have been widely used in the numerical simulations of rotor
stator interactions. However, they are not adequate in the study of tonal acoustic
because of their reflective properties. Figure 13(a, b) shows the comparison of sho
and long grid calculations with reflective boundary conditions for the 3-stator/4-rotc
case. In Figure 13(a) the axial variation of the amplitudes of two propagating mode
are shown. The effect of using reflective boundary conditions can be seen in this figur
At the exit boundary of the short grid, the amplitudes become zero whereas at the ini
boundary, the amplitudes are very small.

The short and long grid solutions also do not compare well within the flow domai
The short grid solutions do not show an axial region where the amplitudes remai
constant. This is because a reflective boundary condition reflects any propagating moc
back into the flow domain. As expected the long grid solution does exhibit an axi
region over which the amplitudes remain constant. The reason for this is that tk
coarseness in the grids near the inlet and exit boundaries essentially dissipates tt
propagating waves, thus minimizing the effects of reflection. In contrast to th
propagating modes, the effect of the reflective boundary conditions on the decayir
modes is only significant near the boundaries. Figure 13(b) shows the axial variation (
the (1,2) mode upstream of the stage and the (1,3) mode downstream of the stag
The results show that the amplitudes remain unaffected in the near field region of tt
airfoils. It should be recalled that these resuits are for the 3-stator/4-rotor case. For th
case the boundary conditions did not significantly affect the pressure amplitudes on th
airfoil surfaces. The amplitudes on the airfoil surfaces are mainly composed of tt
lower harmonics. For the 3-stator/4-rotor case, the lower harmonics decay wil
increasing axial distance from the airfoils. Reflective boundary conditions do refle
these modes but the effect of the reflection is confined to the region near ti
boundaries.
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Figure 14. Comparison between a long grid solution and a short grid solution for the (0, 3) mode upstream
and the (0,4) mode downstream of the rotor-stator pair using the (a) one-dimensional non-reflective
boundary condition and the (b} two-dimensional non-reflective boundary condition. ——, - — ., Long grid;
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Figures 14 and 15 show the axial variation of the amplitudes of the same modes [as in
Figure 13(a, b)] obtained on the short and long grids with non-reflective boundary
conditions. Figure 14(a, b) shows the upstream axial variation of the amplitudes of the
(0,3) mode and the downstream variation of the (0,4) mode with one-dimensional
boundary conditions [equations (18, 22)], and two-dimensional boundary conditions
[equations (19, 24)], respectively. The variation of the amplitudes of the propagating
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Figure 15. Comparison between a long grid solution and a short grid solution for the (1, 2) mode upstream
and the (1, 3) mode downstream using (a) the one-dimensional non-reflective boundary condition and (b) the
two-dimensional non-reflective boundary condition. , ——~, Long grid; - - - - - » — —~—, short grid.
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TABLE 3.
Converged operating conditions

Experimental Reflective B.C. 1-D B.C. 2-DB.C.
_g___ 0-963 0-963 0-9636 0-963
totalinit
VelocitYinie 0-083 0-084 0-083 0-084
Protaliner 1-0034 1-0034 1-0031 1-0034

modes for the short grid case are similar to that for the long grid. However, the overall
levels are a bit different. This difference may be due to the difference in the converged
operating conditions as shown in Table 3. The differences between the short and long
grid solutions with one-dimensional boundary conditions are larger than that obtained
with the two-dimensional boundary conditions. The results also show some reflectivity
at the boundaries, as evidenced by the oscillations in the amplitudes near the upstream
boundaries. Figure 15(a, b) shows the upstream axial variation of the (1,2) mode and
the downstream axial variation of the (1,3) mode. In contrast to the propagating
modes, the amplitudes of these modes remain unaffected in the near-field region of the
airfoils. At the inlet and exit computational boundaries of the short grid, there are
differences between the, results obtained between the long and short grid solutions.
However, the solutions obtained by the one-dimensional and two-dimensional non-
reflective boundary conditions are slight. Examination of other decaying modes show
the same overall behavior, i.e., the amplitudes of the modes remain nearly unaffected
in the near-field regions of the airfoils.

The amplitudes of the decaying modes vary exponentially in the upstream and
downstream directions [equation (11)]. The rate of decay depends upon the underlying
mean flow and the temporal and spatial frequencies of the mode as given in equation
(12). (It should be recalled that equation (12) is derived under the assumption of linear
perturbations to a steady uniform mean flow]. The axial and transverse Mach numbers
of the underlying mean flow upstream and downstream of the turbine is obtained from
the numerical solutions. The mean flow quantities in nondimensional units are given in
Table 4. The nondimensional velocity of the rotor airfoils (V) is 0-1051282. The
quantities M., M, and Mg in equation (9) can be evaluated from U, U,, Vi and the
sonic velocity of the underlying mean flow.

Figure 16(a.b) shows the axial variation of the amplitudes of some decaying modes
upstream and downstream of the rotor—stator pair. It should be noted that equations
(11) and (12) yield only the rate of decay and not the amplitude level. Hence in Figure
16(a,b), only the slopes of the curves are of interest. The behavior of these modes
upstream of the rotor—stator pair is in excellent agreement with the linear theory in the
region where the grid is sufficiently fine. In the far upstream region. the numerical

TasLE 4.
Mean flow quantities

Upstream | Downstream

Axial velocity, U, 0-0842535 0-0864004
Transverse velocity, U, 0-00 0-0701666
Sonic velocity, ¢ 1-1829303 1-1774635
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Figure 16. Comparison between numerical and theoretical decay rates upstream for (a) mode (1,2) and
(b) mode (-1, 1) upstream of the stator and for (c) mode (—1,1) and (d) mode (1, 3) downstream of the
rotor: , numerical; - - -, theoretical.

solution deviates from the theoretical exponential decay because of the very coarse grid
in this region. g

Downstream of the rotor--stator pair, a difference between the numerical results and
the linear theory is seen [Figure 16(c, d)]. The axial variation of the natural logarithm
of amplitude of the (—1,1) mode (log a_, ;) is shown in Figure 16(c). Even though the
overall decay matches that of the theoretical exponential decay, the numerical variation
of the amplitude is not a “‘pure” exponential. Rather, the axial variation of the
computed amplitude is exponential as well as oscillatory in nature. This behavior was
observed for all (I, k) modes, where [ <0. Figure 16(d) shows the axial variation of the
natural logarithm of the amplitude of the (1,3) mode. The decay of this mode is
exponential, however, the decay rate does not match the theoretical prediction. This
difference between the numerical and theoretical decay rates was observed for all (/, k)
modes where /> 0. It should be recalled that one of the assumptions underlying the
theoretical results is a uniform mean flow. However, downstream of the rotor-stator
pair, the underlying mean flow does deviate from a uniform flow because of the wakes
of the rotor airfoils. This deviation is much more than the deviation upstream of the
rotor—stator pair due to potential effects. It is believed that the nonuniformity in the
mean flow is the main reason for the discrepancy between the numerical results and
theory.

7. SUMMARY

This study focuses on the numerical computation of tones in rotor-stator interactions.
the numerical predictions are obtained by solving the thin-layer Navier—Stokes
equations on a system of patched grids. The mode-cotent of interaction tone noise is



636 A. A. RANGWALLA AND M. M. RAI

obtained for two different airfoil counts and is shown to conform with a kinematica
analysis of the flow. In addition, the propagation characteristics of different modes are
compared with the predictions of linear theory. Numerically computed pressure
amplitudes on the surface of the airfoils are compared with experimental data.

The effects of both reflective and non-reflective boundary conditions on the
calculated flow field were assessed. It was found that for the short-grid calculations
non-reflective boundary conditions had to be used in order to predict the tona
acoustics in the flow field. Use of non-reflective boundary conditions becomes more
important for those cases where there is a high energy content in the propagating
modes. (The single-stator/single-rotor case for example, had propagating lowe:
harmonics. These harmonics had high energy content. Reflection of these harmonic
from the computational boundaries resulted in a degradation of the computed pressure
amplitudes on the airfoil surfaces.) It was also shown that reflective  boundars
¢conditions can be made to behave essentially as non-reflective boundary condition:
with the use of appropriately long grids in the upstream and downstream regions. The
long grid approach in conjunction with an increasing grid cell size in the far upstrean
and downstream regions results in numerical dissipation of propagating modes, thu
avoiding the problems due to reflections ar the computational boundaries.
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UNSTEADY NAVIER-STOKES COMPUTATIONS FOR
ADVANCED TRANSONIC TURBINE DESIGN

Akil A. Rangwallat
MCAT Institute, Mountain View, CA

Abstract

This paper deals with the application of a three-
dimensional, time-accurate Navier-Stokes code for pre-
dicting the unsteady flow in an advanced transonic
turbine. For such advanced designs, prior work in
two dimensions has indicated that unsteady interac-
tions can play a significant role in turbine performance.
These interactions affect not only the stage efficiency
but can substantially alter the time-averaged features
of the flow. This work is a natural extension of the
work done in two dimensions and addresses some of
the issues raised therein. These computations are be-
ing performed as an integral part of an actual de-
sign process and demonstrate the value of unsteady
rotor-stator interaction calculations in the design of
turbomachines. Results in the form of time-averaged
pressures and pressure amplitudes on the airfoil sur-
faces are shown. In addition, instantaneous contours
of pressure and Mach number are presented in order to
provide a greater understanding of the inviscid as well
as the viscous aspects of the flowfield. Relevant sec-
ondary flow features such as cross-plane contours of to-
tal pressure and span-wise variation of mass-averaged
quantities are also shown.

Introduction

The traditional design of new turbines has re-
lied upon empirical correlations, extensive experimen-
tal data, and a technology data base comprising pre-
vious designs. This design process has proven very
reliable for new designs that do not deviate very much
from those in the existing data base. However, a more
general predictive capability is needed when the oper-
ating conditions of a new design demand radical devi-
ations from the data base.

Considerable progress has been made in using
computational fluid dynamics (CFD) to predict flows
within turbomachines. Much of the early work has fo-
cused on predicting the flow in airfoil cascades. An
extensive body of experimental and numerical results
in the literature deals with a wide variety of two-and

three-dimensional cascade geometries. While such meth-

ods of analysis of flows in isolated airfoil rows have
helped improve our understanding of flow phenomena
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in turbomachinery and have gained widespread accep-
tance in the industrial community as a design tool,
they do not yield any information regarding the un-
steady effects arising out of rotor-stator aerodynamic
interaction. However, it is becoming increasingly im-
portant to consider interaction effects in the design of
new generation turbines. This has come about due to
the constraints of low weight, small size, high specific
work per stage, high efficiency, and durability, which
results in very high turning angles and unconventional
airfoil shapes, potentially giving rise to nonlinear un-
steady interactions.

In the past few years, advanced transonic tur-
bines have been designed by Pratt and Whitney in
support of the Consortium for CFD Application in
Propulsion Technology sponsored by NASA Marshall
Research Center. These turbines are characterized by
very high flow turning angles (160° per stage) and rel-
atively high loading coeflicients. The current status
of turbine design technology is shown in Fig. 1 (pri-
vate communication, L. Griffin, NASA Marshall Space
Flight ‘Center). The figure shows the turning angles
and turbine loading coefficients of some existing tur-
bine designs. The figure shows two designs (the G3T
and the G2OT) that have turning angles of 160° which
is 20° higher than the traditional design limit of 140°.

Numerical methods that simulate the unsteady
flow associated with rotor-stator configurations have
been developed in recent years. References 1-3 present
a zonal approach for solving the unsteady, thin-layer,
Navier-Stokes equations for rotor-stator configurations
in a time-accurate manner, both in two and three di-
mensions. The present work is an application of the
three-dimensional rotor-stator code described in Ref.
3, to evaluate the design of the advanced Gas Genera-
tor Oxidizer turbine designed by Pratt and Whitney,
and will henceforth be referred to as the G*OT. It
should be mentioned that the first application of an un-
steady two-dimensional Navier-Stokes solver for design
purposes was carried out for the G3T" (Ref. 4). The nu-
merical predictions were obtained at a constant radius
corresponding to the midspan of the rotor airfoils. The
primary issue was the effect of unsteady interactions
on boundary layer separation. The results from the
unsteady two-dimensional analysis led to design mod-
ifications (Ref. 4) and provided the designers with a
better understanding of the physics of the flow. The
results also validated the concept of using high turn-
ing angles and high specific work per stage. One out-



come was the possibility of using single-stage turbines
for certain applications, thus considerably simplifying
the design process. This directly influenced the de-
sign of the G2OT. The unsteady two-dimensional code
was again used to aid in the design of the G*OT and
was reported in Ref. 5. The flow was predicted at
a constant radius which was equal to the midspan of
the rotor airfoil. Results were obtained for two power
settings (100% and 70%) and it was found that the
turbine loads were within the tolerances specified by
design requirements and were acceptable. The two-
dimensional analysis used in Ref. 4-5 contained quasi-
three-dimensional source terms to account for stream
tube contraction effects (Ref. 6). The numerical algo-

rithm was an extension of that previously reported in
Ref. 7.

One drawback of the two-dimensional analysis
is that it is not complete. Since the flow is three-
dimensional, the issue of secondary flow influencing
flow features such as strength and position of the shocks
has to be addressed. Other issues such as the effect of
unsteady interactions on the end-wall boundary layers
have to be assessed. Hence a three-dimensional inter-
action study was initiated.

In this paper, the three-dimensional as well as
some two-dimensional results for the G*OT will be
presented. The two-dimensional results were obtained
for two power settings (100% and 70%) whereas the
three-dimensional results were obtained for only the
100% power setting. Comparisions will be made wher-
ever possible. In particular, it was found that there
were similarities as well as differences between the two-
dimensional and three-dimensional results. The over-
all loading on the airfoils obtained from the three-
dimensional analysis at midspan compared fairly with
the two-dimensional predictions. However, some of the
details such as strength and positions of the shocks dif-
fered. This also resulted in weaker unsteady interac-
tion predictions by the three-dimensional calculations.

Two grid systems (one with twice as many points
in the radial direction than the other) were used for a
limited grid independance study. Each grid system
contains multiple patched and overlaid grids as de-
scribed in Ref. 3. These grids can move relative to
one another to allow for the relative motion of the ro-
tor airfoils with respect to the stator airfoils.

Numerical Method

The numerical method solves the unsteady, three-
dimensional, thin-layer Navier-Stokes equations. The
Navier-Stokes equations in three dimensions are nondi-
mensionalized and transformed to a curvilinear time-
dependent coordinate system, and a thin-layer approx-

imation is then made. The unsteady, thin-layer, Navier-
Stokes equations are solved using an upwind-biased
finite-difference algorithm. The method is third-order-
accurate in space and second-order-accurate in time.
Several iterations are performed at each time step, so
that the fully implicit finite-difference equations are
solved to ensure a time-accurate solution. Further de-
tails of the method can be found in Ref. 3.

Boundary Conditions

The boundary conditions required when using
multiple zones can be broadly classified into two types.
The first are the zonal conditions which are imple-
mented at the interfaces of the computational meshes,
and the second are the natural boundary conditions
imposed on the surface and the outer boundaries of
the computational mesh. The treatment of the zonal
boundary conditions can be found in Ref. 2. The nat-
ural boundary conditions used in this study are dis-
cussed below.

Airfoil Surface Boundary

The boundary conditions on the airfoil surfaces
are the “no-slip” condition and adiabatic wall condi-
tions. It should be noted that in the case of the rotor
airfoil,; “no-slip” does not imply zero absolute velocity
at the surface of the airfoil, but rather, zero relative
velocity. In addition, the derivative of pressure in the
direction normal to the wall surface is set to zero.

Exit Boundary

The flow in the axial direction is subsonic at the
exit boundary and hence only one flow quantity has to
be specified. The flow quantity chosen in this study
is the exit static pressure as a function of radius. To
completely specify the flow variables at the boundary,
four other flow quantities are extrapolated from the
interior. The four chosen are the Reimann invariant,

2¢
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the entropy,

and the velocities in the transverse directions. One dis-
advantage of this type of boundary condition is that
the pressure waves that reach the boundary are re-
flected back into the flow domain. However, this bound-
ary condition was chosen since, in general, it provides
greater control on the turbine operating conditions
and results in the correct pressure drop and mass flow



through the turbine.
Inlet Boundary

The flow at the inlet boundary is subsonic. Four
quantities need to be specified at this boundary. The
four chosen were the Reimann invariant,

2
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vy—1
the total pressure as a function of radius,
y-—1 X7
Ptotal = Pinlet (l + '—Q'_Miznlet) v

and the inlet flow angles,
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and
Winlet

—== = tan(¢)

Uinlet
The fifth quantity needed to update the points on this

boundary is also a Reimann invariant that is extrapo-
lated from the interior and is given by

2c
v-1
In the above equations, the quantities v and v and w
are the velocities in the axial (z) tangential (9) and
the radial (r) directions, p is the pressure and c is
the local speed of sound. Specifying the total pressure
at the inlet results in a reflective boundary condition,
but together with the specification of the exit static

pressure, has the advantage of determining uniquely
the turbine operating conditions.

Ro=u—

Periodic Boundaries

Turbomachines are designed with unequal airfoil
counts in the stator and rotor rows in order to mini-
mize vibration and noise. A complete viscous simula-
tion including all of the airfoils in the stator and rotor
rows is yet impractical in a design environment. The
approach used here is to assume that the ratio of the
number of stator to rotor airfoils is a ratio of two small
integers. This is achieved by scaling the stator or the
rotor geometries such that the blockage remains the
same. Periodicity conditions are then imposed over
the composite pitch. For the case of the G2OT tur-
bine, the number of stator airfoils is 20 and the number
of rotor airfoils is 42. By changing the number of sta-
tor airfoils to 21 and rescaling the stator airfoils by a
factor of 20/21, a stator to rotor airfoil count of 1 to
2 is achieved. The calculation assumes that the flow
exhibits spatial periodicity over one stator airfoil and
two rotor airfoils. Note that the pitch of one rescaied
stator airfoil is equal to the composite pitch of two
rotor airfoils.

Geometry and Grid System

A schematic diagram of the G2OT is shown in
Fig. 2. This is a single stage turbine that is designed
to operate in the transonic regime. It is characterized
by very high turning angles and high specific work.

Figures 3a-b show the system of overlaid grids
used to discretize the flow domain. The figure shows
the fine grid with 51 grid points in the spanwise direc-
tion. Figure 3a shows the grid at the midspan. Each
airfoil has two zones associated with it; an inner zone
and an outer zone. The inner zone contains an O-grid
that is generated using an elliptic grid generator. This
grid is clustered near the airfoil surface in order to re-
solve the viscous effects. The outer zone is discretized
with an H-grid and is generated algebraically. The in-
ner and outer grids overlap one another. This position-
ing of the inner and outer grids facilitates information
transfer between the two zones. The outer H-grids of
the stator airfoils and rotor airfoils overlap and slip
past each other as the rotor airfoils move relative to
the stator airfoils. Figure 3b shows the surface grid
(minus the casing). Here, the grid in the tip clearance
region can also be seen. This grid was also generated
by means of an elliptic grid generator and maintains
metric continuity with the inner O-grid. The fine grid
contains approximately 940000 grid points whereas the
coarse grid has half as many.

Results

It should be mentioned that the numerical method
has been validated both in two and three-dimensional
applications. In particular, the ability to predict the
time-averaged pressures and pressure amplitudes on
airfoil surfaces and total pressure losses in airfoil wakes
have already been demonstrated for turbines as well as
for compressors (see Refs. 1-4, 7, 8).

G2?*0T Two-Dimensional Computations

A brief description of the two-dimensional results
(Ref. 5) will first be presented for the purpose of
comparison with the three-dimensional results. Two-
dimensional predictions were obtained for two power
settings. The first setting is at 100% power and the
second is at 70% power. The operating conditions for



the two power settings are shown in Table I.

100% Power 70% Power
Inlet Mach No. 0.46 0.54

Inlet Reynolds No. 2.6 x 10%/inch 1.1 x 10%/inch

RPM 7880 6232
Inlet Piorai 542.77psta 313.82psia
Exit Piiaric 200.00psia 144.5psia
Inlet Tiota 1307.02°R 1080.88°R

Table I. Turbine operating conditions

Static Pressure Variation on Airfoils Fig-
ures 4 and 5 show the time-averaged and unsteady en-
velope of static pressure on the airfoil surfaces for the
two different power settings, respectively. The pres-
sure coefficient on the surface of the stator airfoils in
this case is defined as

Cp=

Dstatic
Ptotaliniet

where pyiaric is either the time-averaged static pres-
sure on the surface of the airfoil (to obtain the time-
averaged pressure distribution) or the maximum or
minimum pressure over a cycle (which results in the
pressure envelope). The time averaging is performed
over a cycle which corresponds to the rotor airfoils
moving through two airfoil pitches. The pressure co-
efficient on the surface of the rotor airfoils is defined
as

Dstatic

Cp =

DPtotal(relative)rotoriniet

Here, the pressure is normalized with respect to the
time-averaged relative inlet total pressure to the ro-
tor rows. The figures show that the results of the
two power settings are qualitatively similar. The pre-
dicted pressure amplitudes are slightly smaller for the
70% power setting than for the design setting (100%
power). The pressure distribution indicates a weak
(nearly stationary) shock on the suction surface of the
stator airfoil that impinges on the rotor suction surface
near the leading edge (Ref. 5). It is this shock that
accounts for the moderately high pressure amplitudes
near the leading edge of the rotor airfoils. The pressure
distributions also indicate a shock near the trailing
edge of the rotor airfoils. This second shock is nearly
stationary with respect to the moving rotor airfoils. It
should be noted that these are two-dimensional results
at constant radius. In the three-dimensional case, the
interaction effects are found to be less severe due to
the relaxation effects of the spanwise direction.

G?0T Three-dimensional results

The results for the three-dimensional computa-
tions of the G2OT for the 100% power setting are pre-
sented in this section. These results were obtained
by integrating the governing equations and boundary
conditions described earlier. A modified version of the
Baldwin-Lomax turbulence model (Refs. 9-11) was
used to determine the eddy viscosity. The modifica-
tion involves the use of a blending function that varies
the eddy viscosity distribution smoothly between the
blade and endwall surfaces. Further details can be
found in Refs. 10-11. The kinematic viscosity was
calculated using Sutherland’s law.

Static Pressure Variation on Airfoils Fig-
ures 6-8 show the time-averaged and unsteady enve-
lope of static pressure on the stator and rotor airfoils
at three spanwise locations. Figures 6a-8a show the
pressure variations on the stator airfoil at the hub, the
midspan and at the casing, whereas Figs. 6b-8b show
the variations at the hub, the midspan and at the tip
of the rotor airfoils. These results were obtained by
the fine grid calculations and do not show any signif-
icant differences when compared with those obtained
from the coarser grid. The level of unsteadiness on
the stator airfoils is small compared to that on the
rotor airfoils. The amplitudes also are smaller at the
casing than at the hub. The figures seem to indicate
the existence of a weak shock (made clearer by contour
plots) on the suction surface of the stator near the hub.
The pressure amplitudes on the rotor airfoil are larger.
The rotor airfoils are unloaded considerably at the tip.
However, it was found that this is very localized near
the tip region and is not very critical. The predicted
pressure amplitudes of the three-dimensional results at
midspan, are smaller than the two-dimensional results.
This is mainly due to the difference in the strength of
the predicted axial gap shock.

Figures 9a-b show the comparisions of the time-
averaged pressures between the three-dimensional and
the two-dimensional results. On the stator airfoil, the
two-dimensional calculations predict a lower unload-
ing at the airfoil nose than that shown by the three-
dimensional calculations. It should be noted that the
two-dimensional calculations were performed on a sur-
face of constant radius. Quasi-three-dimensional source
terms associated with stream-tube contraction were
included in the calculation, but the terms associated
with radius variation were not. To properly account
for these terms, the two-dimensional calculations would
have to be performed on a cylindrical surface with an
axially varying radius. The overall loading on the ro-
tor airfoils compares better. However, the details are
different. In particular, the position and strength of



the trailing edge shock on the suction surface is differ-
ent. Also, other details that were present in the two-
dimensional calculations, such as a large local vari-
ation on the suction surface, is absent in the three-
dimensional results.

Instantaneous Mach Number Contours Fig-
ures 10a-c show instantaneous Mach number contours
at 20%, 50% (midspan), and 80% of span respectively.
These results were obtained for the fine grid system.
At 20% of span, the shock near the trailing edge of
the rotor airfoil can be seen. At this location, an axial
gap shock was also seen. However, unlike the two-
dimensional calculations the three-dimensional calcu-
lations predict an intermittent axial gap shock. At
midspan (Fig. 10b), the shock in the axial gap region
is much weaker, whereas there is no shock at the down-
stream location. In fact, it was found that the radial
extent of the axial gap shock varied with time with a
maximum extent of about 50%. Figure 10c shows the
Mach contours at 80%. The contours seem to indicate
that there might be unsteady separation on the suction
surface of the rotor airfoils. Recall that the turning an-
gles in this turbine are very high, and there is a con-
cern about massive boundary layer separation under
the influence of unsteady interactions. The numeri-
cal calculations do not predict massive boundary layer
separation, as indicated by the Mach number contours,
thus increasing the confidence in the design.

Instantaneous Static Pressure Contours Fig-

ures 1la-c show the instantaneous pressure contours
at 20% 50% (midspan) and 80% of span respectively.
These contours basically highlight the inviscid features
of the flow. As expected, the rotor shock near the hub
can be seen.

Mass- Averaged Quantities versus Span Fig-
ure 12 shows the mass-averaged meridonial angle ver-
sus normalized span at four different axial stations.
The axial stations correspond to the inlet of the tur-
bine, the midgap, half a chord downstream of the rotor
airfoil, and about one and a half chord lengths down-
stream of the rotor airfoil. The figure does show that,
to a large extent, the flow turns about 160° through
the stage, however, it also shows a region of under-
turning at the midspan. Figure 13 shows the mass-
averaged radial pitch angle. Recall from the schematic
of the G2OT (Fig. 2) that the casing angle is —30° at
the inlet, and is positive aft of the rotor (approximately
11.75°). This is reflected in the mass averaged pitch.
Figures 14-17 show the variation of the mass-averaged
Mach number, the relative Mach number (relative with
respect to the rotating rotor airfoils), the absolute to-
tal pressure and the relative rotational total pressure.

One surprising aspect of the results is the local increase
in total pressure losses at the midspan.

Time-Averaged Contours Figures 18a-b show
the time-averaged contours of the relative rotational
total pressure at midgap and half a chord length down-
stream of the rotor airfoils. The circumferential extent
of Fig. 18a equals the circumferential pitch between
two successive stator airfoils whereas that of Fig. 18b
equals the pitch between two rotor airfoils. Also, it
should be noted that the time averaging is done in two
different frames of reference. At the midgap (Fig. 18a)
the frame of reference is stationary, whereas, down-
stream of the rotor airfoils (Fig. 18b) it is rotating.
The contours at the midgap do show the expected
(nearly uniform in span) stator wake along with the
hub and casing secondary flows. However, aft of the
rotor blades, at the midspan, a region of slightly higher
losses exists. This was also observed in the mass-
averaged numerical data (Figs. 16-17). Figures 19a-b
show the time-averaged contours of Mach number rel-
ative to the rotor airfoils at the same axial location.
The relative Mach number of the flow is subsonic at
the midgap, but downstream of the rotor it becomes
supersonic and eventually shocks.

Summary

A detailed numerical calculation of the three-
dimensional unsteady flow in an advanced gas gener-
ator turbine is presented. The computational results
are obtained by solving the three-dimensional, thin-
layer, Navier-Stokes equations on a system of overlaid
grids. The numerical results do capture many aspects
of the flow that could aid in the understanding of the
flow. In addition, the results do not indicate any sig-
nificant boundary layer separation, (an object of con-
cern). The unsteady loadings were found to be within
acceptable limits.

The present results indicate that a proper un-
derstanding of the unsteady interaction effects could
play an important role in the design of advanced gas
generator turbines.
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Fig. 18b Time-averaged relative rotational total pres-
sure aft of the rotor airfoil.




Fig. 19a Time-averaged relative mach number at mid-

gap.
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